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Critical Digital Systems: Design and Implementation.
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Figure: A Meta-process to Design and Implement CDS.
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HILECOP: A Process to Design and Implement CDS.
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Figure: Workflow of the HILECOP Methodology, developed at INRIA
(CAMIN Team) [1].
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Formal Methods for HILECOP.
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Figure: Workflow of the HILECOP Methodology, developed at Inria
(CAMIN Team) [1].

Verification of HILECOP.
I Ensure model correctness (analysis).

I Ensure behavior preservation through transformation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 4 / 30



Formal Methods for HILECOP.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Figure: Workflow of the HILECOP Methodology, developed at Inria
(CAMIN Team) [1].

Verification of HILECOP.
I Ensure model correctness (analysis).

I Ensure behavior preservation through transformation.
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Purpose of Our Work.
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Purpose of Our Work.
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Goal. Proof of behavior preservation.
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Proof steps.

Inspired by CompCert, a formally verified C compiler [2], written
with the Coq proof assistant [3]:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation and prove behavior
preservation.
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A Reminder on the Coq proof assistant.

About.
I Developed by INRIA and CNAM teams since 1984.

I 1984: first contribution by Thierry Coquand and Gérard Huet.

I 1991: Christine Paulin extends the language with the Calculus
of Inductive Constructions.

Coq: A bird with two legs.

I Generic Functional Programming Language.

I Proof language.
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Presentation of HILECOP Petri Nets.



The Petri Net (PN) Formalism.

I To model dynamic systems.

I Directed weighted graph.

I Places (≈ states or
resources) and transitions
(≈ events).

P0

(waiting for
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P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Figure: A request execution system
modeled with a Petri net.
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Marking and Transition Firing.

I Marking: current state of the
system.

I Sensitization: a transition t is
ready to be fired.
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HILECOP High-Level Models.
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Figure: An Example of HILECOP high-level model at the first stage of
the workflow.
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HILECOP High-Level Models.

P1

T1

P2

T2

P1

T1

P2

T2

Figure: Flattened version of the model.

Remark.
The flattened model corresponds to the implementation-ready
model, input of the model-to-text transformation.
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HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

I Synchronously executed (with priorities)

I generalized

I extended

I Interpreted

I Time

I with macroplaces

I Petri Nets
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HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

I Synchronously executed (with priorities)

I generalized

I extended

I Interpreted

I Time

I with macroplaces

I Petri Nets

We will only present Synchronously executed (with priorities),
generalized, extended Petri Nets (SPNs).
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Generalized and extended PNs.

P0 P1 P2

T0

3

T1

2 2

Figure: An example of extended, generalized PN.

I Generalized: Edge weights ∈ N.

I Extended: Inhibitor and test edges.
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Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4
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Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Conflict types.

I Structural: T0 and T1 have P0 as a common input place.

I Effective: the firing of T0 disables T1, and conversely.
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Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?

I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1
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Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?
I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1 !
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Conflicts and priorities.

P0

T0 T1

Figure: Resolving conflicts with priorities.

Priority relation.

T0 has a higher firing priority than T1.
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Conflicts and priorities.

P0 P1

T0 T1 T2 T3

P2

T4 T5

Priority groups :

[T3, T2, T1, T0]

[T5, T4]

Figure: Determining priority groups in a PN.
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Formalizing HILECOP Petri Nets.



Formal Definition of SPNs.

A synchronously executed, extended, and generalized
Petri net with priorities is a tuple
<P,T , pre, test, inhib, post,M0, clock,�>
where we have:

1. P = {P0, . . . ,Pn} a set of places.

2. T = {T0, . . . ,Tn} a set of transitions.

3. pre ∈ P → T → N.

4. test ∈ P → T → N.

5. inhib ∈ P → T → N.

6. post ∈ T → P → N.

7. M0 ∈ P → N, the initial marking of the SPN.

8. clock ∈ {↓ clock, ↑ clock}.
9. �, the priority relation, which represents the firing priority

between transitions of the same priority group.
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Implementation of SPNs in Coq.

1 Structure Spn : Set :=

2 mk_Spn {
3 places : list Place;

4 transs : list Trans;

5 pre : Place → Trans → nat;

6 test : Place → Trans → nat;

7 inhib : Place → Trans → nat;

8 post : Trans → Place → nat;

9 initial_marking : Place → nat;

10 priority_groups : list (list Trans);

11 lneighbors : Trans → Neighbors;

12 }.

Figure: The Coq structure for SPNs.
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Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0, clock,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I A transition t ∈ sens(M), if M ≥ pre(t), and M ≥ test(t),
and M < inhib(t) or inhib(t) = 0.

I A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).
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SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I  ⊆ S ×Clk × S is the state changing relation, which is noted

s  
clk

s ′ where s, s ′ ∈ S and clk ∈ Clk .
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SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)  
↓ clock

s ′ = (Fired ′,M) if ↓ clock = 1 and:

1 All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

2 All transitions both firable and sensitized by the residual
marking, which is the marking resulting from the firing of all
higher priority transitions, are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti )

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
3 All firable transitions that are not sensitized by the residual

marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti )

)
⇒ t /∈ Fired ′.
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An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti )

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)  
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′
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SPN State Changing Relation (Rising Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)  
↑ clock

s ′ = (Fired ,M ′) if ↑ clock = 1 and:

4 M ′ is the new marking resulting from the firing of all
transitions contained in Fired, i.e.:
M ′ = M −

∑
ti∈Fired

(
pre(ti )− post(ti )

)
.
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SPN Semantics in Coq.

1 Inductive SpnSemantics (spn : Spn) (s s’ : SpnState) : Clock → Prop :=

2 | SpnSemantics_falling_edge :

3 (* Rules 1, 2 and 3 *)

4 ... → SpnSemantics spn s s’ falling_edge

5 | SpnSemantics_rising_edge :

6 (* Ensures the consistency of spn, s and s’. *)

7 IsWellDefinedSpn spn →
8 IsWellDefinedSpnState spn s →
9 IsWellDefinedSpnState spn s’ →

10 (* Fired stays the same between state s and s’. *)

11 s.( fired) = s’.(fired) →
12 (* Rule 4 of SPN semantics. *)

13 (forall (p : Place) (n : nat),

14 In (p, n) s.( marking) →
15 In (p, n − (pre_sum spn p s.(fired)) + (post_sum spn p s.(fired)))

16 s’.( marking)) → SpnSemantics spn s s’ rising_edge.

Figure: The Semantics of SPNs in Coq.
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SPN Token Player Program.



SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Unformal way to verify the SPN semantics.
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An Algorithm for one cycle of evolution.
Data: spn, an SPN. s, the state of spn at the beginning of the clock cycle.

Result: A couple of SPN states, s’ and s”, results of the evolution of spn from state s.

1 begin

2 fired transitions← []

/* Phase 1, falling edge of the clock. */

3 foreach priority group in spn.priority groups do

4 resid m← s.marking

5 foreach trans in priority group do

6 if is firable(trans, s) and is sensitized(trans, resid m) then

7 update residual marking(trans, resid m)

8 push back(trans, fired transitions)

9 s’← make state(fired transitions, s.marking)

/* Phase 2, rising edge of the clock. */

10 new marking ← s’.marking

11 foreach trans in fired transitions do

12 update marking pre(trans, new marking)

13 update marking post(trans, new marking)

14 s”← make state(s’.fired, new marking)

15 return ( s’, s”)

Algorithm 1: cycle(spn, s)
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Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

s = (fired ,marking) with s.marking = (P0, 2), (P1, 0), (P2, 0)
priority groups = [ [T0,T1,T2] ]
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Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return ( s’, s”)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])
fired transitions = [T0,T1]
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Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).
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Reminder on Correctness and Completeness.

Let X ,Y be two types. Let P ∈ X → Y be a program and
S ∈ X → Y → {>, ⊥} be its specification.
P takes x ∈ X as an input value and returns some y ∈ Y , S is a
predicate that takes x and y as input values.

Definition (Correctness)

A program P is said to be correct regarding its specification if
∀x ∈ X , y ∈ Y , P(x) = y ⇒ S(x , y)

Definition (Completeness)

A program P is said to be complete regarding its specification if
∀x ∈ X , y ∈ Y , S(x , y)⇒ P(x) = y
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Correctness/Completeness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s  
↓ clock

s’  
↑ clock

s’’.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s  
↓ clock

s’  
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).
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Conclusion.

Context.
I Formal verification of a model-to-text transformation from

HILECOP PNs to VHDL.

I First step: model the semantics of HILECOP PNs (SITPNs).

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

I Handle asynchronous communication in a synchronous
execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.
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Medical Implants: An Application of HILECOP.

Digital Analog
Controller stimulation

pulses generator
1

Digital Analog
Controller stimulation

pulses generator
2
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pulses generator
n

Figure: A Schematic Representation of NEURINNOV’s Implantable
Neuroprotheses.
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HILECOP and CE Certification.

CE Certification for Medical Devices. 1

I European Law on Medical Devices (2017/745).
I To obtain the certification:

I Tests on devices (technologic, clinical).
I Tests on elements of the production chain.

1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0745
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Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s  
↓ clock

s’  
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s  
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti )
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti )
3 . . .
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Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s  
↓ clock

s’  
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s  
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s  
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.
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