Formal Verification of HILECOP.

A Process to Design and Implement Critical Digital Systems.

PhD student: Vincent lampietro¹

PhD supervisors: David Andreu^{1,2}, David Delahaye¹

¹LIRMM, Université de Montpellier, CNRS, Montpellier, France Firstname.Lastname@lirmm.fr

> ²NEURINNOV, Montpellier, France David.Andreu@neurinnov.com

> > June 21, 2019

Context.

CRITICAL DIGITAL SYSTEMS (CDS)?

CRITICAL DIGITAL SYSTEMS (CDS)

CRITICAL DIGITAL SYSTEMS (CDS)

Avionics

Medicine

Automotive

Critical Digital Systems: Design and Implementation.

Figure: A Meta-process to Design and Implement CDS.

HILECOP: A Process to Design and Implement CDS.

Figure: Workflow of the HILECOP Methodology, developed at INRIA (CAMIN Team) [1].

Formal Methods for HILECOP.

Figure: Workflow of the HILECOP Methodology, developed at Inria (CAMIN Team) [1].

Verification of HILECOP.

- Ensure model correctness (analysis).
- Ensure behavior preservation through transformation.

Formal Methods for HILECOP.

Figure: Workflow of the HILECOP Methodology, developed at Inria (CAMIN Team) [1].

Verification of HILECOP.

- Ensure model correctness (analysis).
- Ensure behavior preservation through transformation.

Figure: Workflow of the HILECOP Methodology.

Figure: Workflow of the HILECOP Methodology.

Figure: Part of the HILECOP workflow subject to verification.

Figure: Part of the HILECOP workflow subject to verification.

Goal. Proof of behavior preservation.

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by *CompCert*, a formally verified C compiler [2], written with the Coq proof assistant [3]:

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by *CompCert*, a formally verified C compiler [2], written with the Coq proof assistant [3]:

1. Model the semantics of the source language (i.e, Petri nets).

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by *CompCert*, a formally verified C compiler [2], written with the Coq proof assistant [3]:

- 1. Model the semantics of the source language (i.e, Petri nets).
- 2. Model the semantics of the *target language* (i.e, VHDL).

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by *CompCert*, a formally verified C compiler [2], written with the Coq proof assistant [3]:

- 1. Model the semantics of the source language (i.e, Petri nets).
- 2. Model the semantics of the *target language* (i.e, VHDL).
- 3. Implement the transformation and prove behavior preservation.

A Reminder on the Coq proof assistant.

About.

- Developed by INRIA and CNAM teams since 1984.
- ▶ 1984: first contribution by Thierry Coquand and Gérard Huet.
- 1991: Christine Paulin extends the language with the Calculus of Inductive Constructions.

Coq: A bird with two legs.

- Generic Functional Programming Language.
- Proof language.

Presentation of HILECOP Petri Nets.

The Petri Net (PN) Formalism.

- ► To model *dynamic systems*.
- Directed weighted graph.
- ► Places (≈ states or resources) and transitions (≈ events).

Figure: A request execution system modeled with a Petri net.

- Marking: current state of the system.
- Sensitization: a transition t is ready to be fired.

- Marking: current state of the system.
- Sensitization: a transition t is ready to be fired.

Transition firing.

•
$$M = (P_0, 1), (P_1, 2), (P_2, 0)$$

- Marking: current state of the system.
- Sensitization: a transition t is ready to be fired.

Transition firing.

•
$$M = (P_0, 1), (P_1, 2), (P_2, 0)$$

• T_0 is sensitized \Rightarrow T_0 is fired.

- Marking: current state of the system.
- Sensitization: a transition t is ready to be fired.

Transition firing.

•
$$M = (P_0, 1), (P_1, 2), (P_2, 0)$$

• T_0 is sensitized $\Rightarrow T_0$ is fired.

•
$$M' = (P_0, 0), (P_1, 0), (P_2, 1)$$

HILECOP High-Level Models.

Figure: An Example of HILECOP high-level model at the first stage of the workflow.

HILECOP High-Level Models.

Figure: Component assembling in a HILECOP high-level model.

HILECOP High-Level Models.

Figure: Flattened version of the model.

Remark.

The flattened model corresponds to the *implementation-ready* model, input of the model-to-text transformation.

HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

- Synchronously executed (with priorities)
- generalized
- extended
- Interpreted
- ► Time
- with macroplaces
- Petri Nets

HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

- Synchronously executed (with priorities)
- generalized
- extended
- Interpreted
- Time
- with macroplaces
- Petri Nets

We will only present Synchronously executed (with priorities), generalized, extended Petri Nets (SPNs).

Generalized and extended PNs.

Figure: An example of extended, generalized PN.

- Generalized: Edge weights $\in \mathbb{N}$.
- Extended: Inhibitor and test edges.

Synchronously Executed PNs.

Synchronously Executed PNs.

Synchronously Executed PNs.

Conflicts and priorities.

Figure: An Example of Conflict (Structural and Effective).

Conflict types.

- Structural: T₀ and T₁ have P₀ as a common input place.
- Effective: the firing of T_0 disables T_1 , and conversely.

Conflicts and priorities.

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?

Conflicts and priorities.

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?

• If asynchronous execution: T_0 or T_1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?

- If asynchronous execution: T_0 or T_1
- If synchronous execution: T_0 and T_1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?

- If asynchronous execution: T_0 or T_1
- If synchronous execution: T_0 and T_1

Figure: Resolving conflicts with priorities.

Priority relation. T_0 has a higher firing priority than T_1 .

Figure: Determining priority groups in a PN.

Formalizing HILECOP Petri Nets.

Formal Definition of SPNs.

A synchronously executed, extended, and generalized Petri net with priorities is a tuple $<P, T, pre, test, inhib, post, M_0, clock, \succ>$ where we have:

- 1. $P = \{P_0, \ldots, P_n\}$ a set of places.
- 2. $T = \{T_0, \ldots, T_n\}$ a set of transitions.

3. pre
$$\in P \to T \to \mathbb{N}$$
.

- 4. *test* $\in P \rightarrow T \rightarrow \mathbb{N}$.
- 5. inhib $\in P \rightarrow T \rightarrow \mathbb{N}$.
- 6. $post \in T \to P \to \mathbb{N}$.
- 7. $M_0 \in P \rightarrow \mathbb{N}$, the initial marking of the SPN.
- 8. $clock \in \{\downarrow clock, \uparrow clock\}.$
- 9. ≻, the priority relation, which represents the firing priority between transitions of the same priority group.

Implementation of SPNs in Coq.

```
1 Structure Spn : Set :=
      mk_Spn {
 2
          places : list Place;
 3
          transs : list Trans:
 4
          pre : Place \rightarrow Trans \rightarrow nat;
 5
          test : Place \rightarrow Trans \rightarrow nat:
 6
          inhib : Place \rightarrow Trans \rightarrow nat:
 7
          post : Trans \rightarrow Place \rightarrow nat;
 8
 9
          initial_marking : Place \rightarrow nat;
          priority_groups : list (list Trans);
10
11
          lneighbors : Trans \rightarrow Neighbors;
12
      }.
```

Figure: The Coq structure for SPNs.

Definitions and Notations.

Remark.

The following definitions are given under the scope of a SPN $<P, T, pre, test, inhib, post, M_0, clock, \succ>$.

Definitions and Notations.

Remark.

The following definitions are given under the scope of a SPN $<P, T, pre, test, inhib, post, M_0, clock, \succ>$.

Definition (SPN state)

A SPN state is a couple (*Fired*, *M*) where $M \in P \to \mathbb{N}$ is the current marking of SPN and *Fired* $\subseteq T$ is a list of transitions.

Definitions and Notations.

Remark.

The following definitions are given under the scope of a SPN $<P, T, pre, test, inhib, post, M_0, clock, \succ>$.

Definition (SPN state)

A SPN state is a couple (*Fired*, *M*) where $M \in P \to \mathbb{N}$ is the current marking of SPN and *Fired* $\subseteq T$ is a list of transitions.

Definition (Sensitization and Firability)

- A transition $t \in sens(M)$, if $M \ge pre(t)$, and $M \ge test(t)$, and M < inhib(t) or inhib(t) = 0.
- A transition t ∈ firable(s), where s = (Fired, M), if t ∈ sens(M).

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet $\langle S, s_0, \rightsquigarrow \rangle$ where:

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet $\langle S, s_0, \rightsquigarrow \rangle$ where:

► *S* is the set of states of the SPN.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet $\langle S, s_0, \rightsquigarrow \rangle$ where:

- S is the set of states of the SPN.
- $s_0 = (\emptyset, M_0)$ is the initial state of the SPN.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet $\langle S, s_0, \rightsquigarrow \rangle$ where:

- ► *S* is the set of states of the SPN.
- $s_0 = (\emptyset, M_0)$ is the initial state of the SPN.
- ▶ $\rightsquigarrow \subseteq S \times Clk \times S$ is the state changing relation, which is noted $s \stackrel{clk}{\rightsquigarrow} s'$ where $s, s' \in S$ and $clk \in Clk$.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography.

• $s = (Fired, M) \stackrel{\downarrow clock}{\leadsto} s' = (Fired', M) \text{ if } \downarrow clock = 1 \text{ and:}$

►
$$s = (Fired, M)^{\downarrow clock} s' = (Fired', M)$$
 if $\downarrow clock = 1$ and:

- **1** All transitions that are not firable are not fired, i.e.: $\forall t \in T, t \notin firable(s) \Rightarrow t \notin Fired'.$
- 2 All transitions both firable and sensitized by the residual marking, which is the marking resulting from the firing of all higher priority transitions, are fired, i.e: $\forall t \in firable(s), t \in sens(M - \sum_{t_i \in Pr(t)} pre(t_i)) \Rightarrow t \in Fired',$ where $Pr(t) = \{t_i \mid t_i \succ t \land t_i \in Fired'\}$.

►
$$s = (Fired, M)^{\downarrow clock} s' = (Fired', M)$$
 if $\downarrow clock = 1$ and:

- **1** All transitions that are not firable are not fired, i.e.: $\forall t \in T, t \notin firable(s) \Rightarrow t \notin Fired'.$
- 2 All transitions both firable and sensitized by the residual marking, which is the marking resulting from the firing of all higher priority transitions, are fired, i.e: $\forall t \in firable(s), t \in sens(M - \sum_{t_i \in Pr(t)} pre(t_i)) \Rightarrow t \in Fired',$

where $Pr(t) = \{t_i \mid t_i \succ t \land t_i \in Fired'\}$.

3 All firable transitions that are not sensitized by the residual marking are not fired, i.e.:

 $\forall t \in firable(s), t \notin sens(M - \sum_{t_i \in Pr(t)} pre(t_i)) \Rightarrow t \notin Fired'.$

$$orall t \in \textit{firable}(s), \ t \in \textit{sens}ig(M - \sum_{t_i \in \textit{Pr}(t)}\textit{pre}(t_i)ig) \Rightarrow t \in \textit{Fired'}, \ where \ \textit{Pr}(t) = \{t_i \mid t_i \succ t \land t_i \in \textit{Fired'}\}$$

$$s = (Fired, M) \stackrel{\downarrow clock}{\sim} s' = (Fired', M)$$

Figure: At state s.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography.

$$\forall t \in firable(s), \ t \in sens(M - \sum_{t_i \in Pr(t)} pre(t_i)) \Rightarrow t \in Fired',$$

where $Pr(t) = \{t_i \mid t_i \succ t \land t_i \in Fired'\}$

$$s = (Fired, M) \stackrel{\downarrow clock}{\rightsquigarrow} s' = (Fired', M)$$

$$\blacktriangleright T_0, T_1 \in Fired'$$

Figure: At state s.

$$\forall t \in \textit{firable}(s), \ t \in \textit{sens}(M - \sum_{t_i \in \textit{Pr}(t)} \textit{pre}(t_i)) \Rightarrow t \in \textit{Fired'}, \\ \text{where } \textit{Pr}(t) = \{t_i \mid t_i \succ t \land t_i \in \textit{Fired'}\}$$

Figure: At state s.

$$orall t \in \mathit{firable}(s), \ t \in \mathit{sens}ig(M - \sum_{t_i \in \mathit{Pr}(t)} \mathit{pre}(t_i)ig) \Rightarrow t \in \mathit{Fired'}, \ where \ \mathit{Pr}(t) = \{t_i \mid t_i \succ t \land t_i \in \mathit{Fired'}\}$$

$$s = (Fired, M) \stackrel{\downarrow clock}{\rightsquigarrow} s' = (Fired', M)$$

$$T_0, T_1 \in Fired'$$

$$T_2 \in Fired'?$$

$$M = (P_0, 3), T_2 \in firable(s)?$$

Figure: At state s.

$$\forall t \in \textit{firable}(s), \ t \in \textit{sens}(M - \sum_{t_i \in \textit{Pr}(t)} \textit{pre}(t_i)) \Rightarrow t \in \textit{Fired'}, \\ \text{where } \textit{Pr}(t) = \{t_i \mid t_i \succ t \land t_i \in \textit{Fired'}\}$$

 $s = (Fired, M) \xrightarrow{\downarrow clock} s' = (Fired', M)$ $T_0, T_1 \in Fired'$ $T_2 \in Fired'?$ $M = (P_0, 3), T_2 \in firable(s)?$ YES!

Figure: At state s.

$$orall t \in \mathit{firable}(s), \ t \in \mathit{sens}ig(M - \sum_{t_i \in \mathit{Pr}(t)} \mathit{pre}(t_i)ig) \Rightarrow t \in \mathit{Fired'}, \ where \ \mathit{Pr}(t) = \{t_i \mid t_i \succ t \land t_i \in \mathit{Fired'}\}$$

Figure: At state s.

$$s = (Fired, M) \xrightarrow{\downarrow clock} s' = (Fired', M)$$

$$T_0, T_1 \in Fired'$$

$$T_2 \in Fired'?$$

$$M = (P_0, 3), T_2 \in firable(s)?$$

$$YES!$$

$$M_R = (P_0, 1), T_2 \in sens(M_R)?$$

$$\forall t \in \textit{firable}(s), \ t \in \textit{sens}(M - \sum_{t_i \in \textit{Pr}(t)} \textit{pre}(t_i)) \Rightarrow t \in \textit{Fired'}, \\ \text{where } \textit{Pr}(t) = \{t_i \mid t_i \succ t \land t_i \in \textit{Fired'}\}$$

Figure: At state s.

$$s = (Fired, M) \xrightarrow{\downarrow clock} s' = (Fired', M)$$

$$T_0, T_1 \in Fired'$$

$$T_2 \in Fired'?$$

$$M = (P_0, 3), T_2 \in firable(s)?$$
YES!
$$M_R = (P_0, 1), T_2 \in sens(M_R)?$$
YES!

$$\forall t \in firable(s), \ t \in sens(M - \sum_{t_i \in Pr(t)} pre(t_i)) \Rightarrow t \in Fired',$$

where $Pr(t) = \{t_i \mid t_i \succ t \land t_i \in Fired'\}$

Figure: At state s.

- $s = (Fired, M) \xrightarrow{\downarrow clock} s' = (Fired', M)$ $T_0, T_1 \in Fired'$ $T_2 \in Fired'?$ $M = (P_0, 3), T_2 \in firable(s)?$ YES! $M_R = (P_0, 1), T_2 \in sens(M_R)?$ YES!
 - ► Then, according to rule 2 of SPN semantics: T₂ ∈ Fired'

•
$$s = (Fired, M) \stackrel{\uparrow clock}{\leadsto} s' = (Fired, M')$$
 if $\uparrow clock = 1$ and:

•
$$s = (Fired, M) \stackrel{\uparrow clock}{\leadsto} s' = (Fired, M')$$
 if $\uparrow clock = 1$ and:

4
$$M'$$
 is the new marking resulting from the firing of all transitions contained in Fired, i.e.:
 $M' = M - \sum_{t_i \in Fired} (pre(t_i) - post(t_i)).$

SPN Semantics in Coq.

```
1 Inductive SpnSemantics (spn : Spn) (s s' : SpnState) : Clock \rightarrow Prop :=
     SpnSemantics_falling_edge :
 2
        (* Rules 1, 2 and 3 *)
 3
        \dots \rightarrow \text{SpnSemantics spn s s' falling_edge}
 4
     SpnSemantics rising edge :
 5
 6
        (* Ensures the consistency of spn. s and s'. *)
        <code>IsWellDefinedSpn spn 
ightarrow</code>
 7
 8
        <code>IsWellDefinedSpnState spn s</code> \rightarrow
       IsWellDefinedSpnState spn s' \rightarrow
 9
        (* Fired stays the same between state s and s'. *)
10
        s.(fired) = s'.(fired) \rightarrow
11
        (* Rule 4 of SPN semantics. *)
12
       (forall (p: Place) (n : nat),
13
14
            In (p, n) s.(marking) \rightarrow
            In (p, n - (pre_sum spn p s.(fired)) + (post_sum spn p s.(fired)))
15
               s'.(marking)) \rightarrow SpnSemantics spn s s' rising_edge.
16
```

Figure: The Semantics of SPNs in Coq.

Implementation of the SPN semantics rules.

- Implementation of the SPN semantics rules.
- Computes the evolution of a given SPN from initial state s₀ to state s_n, where n is the number of evolution cycles.

- Implementation of the SPN semantics rules.
- Computes the evolution of a given SPN from initial state s₀ to state s_n, where n is the number of evolution cycles.
- Unformal way to verify the SPN semantics.

An Algorithm for one cycle of evolution.

Data: spn, an SPN. s, the state of spn at the beginning of the clock cycle. Result: A couple of SPN states, s' and s'', results of the evolution of spn from state s.

```
1 begin
          fired_transitions \leftarrow \Pi
2
          /* Phase 1, falling edge of the clock.
          foreach priority_group in spn.priority_groups do
3
                resid_m ← s.marking
 4
                foreach trans in priority_group do
 5
                       if is_firable(trans, s) and is_sensitized(trans, resid_m) then
 6
                              update_residual_marking(trans, resid_m)
 7
                              push_back(trans, fired_transitions)
 8
          s' \leftarrow make_state(fired_transitions, s.marking)
9
          /* Phase 2, rising edge of the clock.
          new_marking \leftarrow s'.marking
10
          foreach trans in fired transitions do
11
12
                update_marking_pre(trans. new_marking)
                update_marking_post(trans, new_marking)
13
          s'' \leftarrow make_state(s'.fired, new_marking)
14
          return (s', s")
15
```

Algorithm 1: cycle(spn, s)

*/

*/

Execution on An Example.

Falling edge phase.

$$\label{eq:s} \begin{split} \mathbf{s} &= (\textit{fired},\textit{marking}) \text{ with } \mathbf{s}.\texttt{marking} = (P_0,2), \ (P_1,0), \ (P_2,0) \\ \texttt{priority_groups} &= [\ [T_0,T_1,T_2] \] \end{split}$$

priority_groups = [
$$[T_0, T_1, T_2]$$
]
fired_transitions = []

priority_groups = [
$$[T_0, T_1, T_2]$$
]
fired_transitions = []
priority_group = $[T_0, T_1, T_2]$

fired_transitions = []
priority_group =
$$[T_0, T_1, T_2]$$

resid_m = $(P_0, 2), (P_1, 0), (P_2, 0)$

fired_transitions = []
priority_group = [
$$T_0, T_1, T_2$$
]
resid_m = ($P_0, 2$), ($P_1, 0$), ($P_2, 0$)

fired_transitions = []
priority_group = [
$$T_0$$
, T_1 , T_2]
resid_m = (P_0 , 2), (P_1 , 0), (P_2 , 0)

$$\begin{array}{l} \texttt{fired_transitions} = [] \\ \texttt{priority_group} = [T_0, T_1, T_2] \\ \texttt{resid_m} = (P_0, 1), \ (P_1, 0), \ (P_2, 0) \end{array}$$

$$\begin{array}{l} \texttt{fired_transitions} = [T_0] \\ \texttt{priority_group} = [T_0, T_1, T_2] \\ \texttt{resid_m} = (P_0, 1), \ (P_1, 0), \ (P_2, 0) \end{array}$$

$$\begin{array}{l} \texttt{fired_transitions} = [T_0] \\ \texttt{priority_group} = [T_0, T_1, T_2] \\ \texttt{resid_m} = (P_0, 1), \ (P_1, 0), \ (P_2, 0) \end{array}$$

fired_transitions =
$$[T_0]$$

priority_group = $[T_0, T_1, T_2]$
resid_m = $(P_0, 1), (P_1, 0), (P_2, 0)$

fired_transitions =
$$[T_0]$$

priority_group = $[T_0, T_1, T_2]$
resid_m = $(P_0, 0)$, $(P_1, 0)$, $(P_2, 0)$

$$\begin{array}{l} \texttt{fired_transitions} = [T_0, T_1] \\ \texttt{priority_group} = [T_0, T_1, T_2] \\ \texttt{resid_m} = (P_0, 0), \ (P_1, 0), \ (P_2, 0) \end{array}$$

$$\begin{array}{l} \texttt{fired_transitions} = [T_0, T_1] \\ \texttt{priority_group} = [T_0, T_1, T_2] \\ \texttt{resid_m} = (P_0, 0), \ (P_1, 0), \ (P_2, 0) \end{array}$$

$$\begin{array}{l} \texttt{fired_transitions} = [T_0, T_1] \\ \texttt{priority_group} = [T_0, T_1, T_2] \\ \texttt{resid_m} = (P_0, 0), \ (P_1, 0), \ (P_2, 0) \end{array}$$

Falling edge phase.

 $s' = ([T_0, T_1], [(P_0, 2), (P_1, 0), (P_2, 0)])$

Rising edge phase.

$$s' = ([T_0, T_1], [(P_0, 2), (P_1, 0), (P_2, 0)])$$

fired_transitions = [T_0, T_1]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography.

Rising edge phase.

fired_transitions = $[T_0, T_1]$ new_marking = $(P_0, 2), (P_1, 0), (P_2, 0)$

Rising edge phase.

fired_transitions = $[T_0, T_1]$ new_marking = $(P_0, 2), (P_1, 0), (P_2, 0)$

Rising edge phase.

fired_transitions = $[T_0, T_1]$ new_marking = $(P_0, 1), (P_1, 0), (P_2, 0)$

Rising edge phase.

$$\begin{array}{l} \texttt{fired_transitions} = [T_0, T_1] \\ \texttt{new_marking} = (P_0, 1), \ (P_1, 1), \ (P_2, 0) \end{array}$$

Rising edge phase.

fired_transitions = $[T_0, T_1]$ new_marking = $(P_0, 1)$, $(P_1, 1)$, $(P_2, 0)$

Rising edge phase.

fired_transitions = $[T_0, T_1]$ new_marking = $(P_0, 0)$, $(P_1, 1)$, $(P_2, 0)$

Rising edge phase.

fired_transitions =
$$[T_0, T_1]$$

new_marking = $(P_0, 0)$, $(P_1, 1)$, $(P_2, 1)$

Rising edge phase.

s'' = ([T_0, T_1], [($P_0, 0$), ($P_1, 1$), ($P_2, 1$)])

Rising edge phase.

$$\mathbf{s'} = ([T_0, T_1], [(P_0, 2), (P_1, 0), (P_2, 0)]) \\ \mathbf{s''} = ([T_0, T_1], [(P_0, 0), (P_1, 1), (P_2, 1)])$$

Coq Implementation of the SPN Token Player.

```
1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :
       option (SpnState * SpnState) :=
 2
       (* Computes the transitions to be fired. *)
 3
       match spn_falling_edge spn starting_state with
 4
       | Some inter_state \Rightarrow
 5
         (* Updates the marking. *)
 6
         match spn_rising_edge spn inter_state with
 7
           Some final_state \Rightarrow Some (inter_state, final_state)
8
           None \Rightarrow None
 9
10
         end
         None \Rightarrow None
11
12
       end
```

Figure: The SPN Token Player Program in Coq.

Coq Implementation of the SPN Token Player.

```
1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :
       option (SpnState * SpnState) :=
 2
       (* Computes the transitions to be fired. *)
 3
       match spn_falling_edge spn starting_state with
 4
       | Some inter_state \Rightarrow
 5
         (* Updates the marking. *)
 6
         match spn_rising_edge spn inter_state with
 7
           Some final_state \Rightarrow Some (inter_state, final_state)
8
           None \Rightarrow None
 9
10
         end
         None \Rightarrow None
11
12
       end
```

Figure: The SPN Token Player Program in Coq.

match checks the result of function calls.

Coq Implementation of the SPN Token Player.

```
1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :
       option (SpnState * SpnState) :=
2
       (* Computes the transitions to be fired. *)
3
       match spn_falling_edge spn starting_state with
4
       | Some inter_state \Rightarrow
5
         (* Updates the marking. *)
6
         match spn_rising_edge spn inter_state with
7
           Some final_state \Rightarrow Some (inter_state, final_state)
8
           None \Rightarrow None
9
         end
10
         None \Rightarrow None
11
       end
12
```

Figure: The SPN Token Player Program in Coq.

match checks the result of function calls.
Functions return Some value or None (error case).

Reminder on Correctness and Completeness.

Let X, Y be two types. Let $P \in X \to Y$ be a program and $S \in X \to Y \to \{\top, \bot\}$ be its specification. P takes $x \in X$ as an input value and returns some $y \in Y$, S is a predicate that takes x and y as input values.

Definition (Correctness)

A program P is said to be correct regarding its specification if $\forall x \in X, y \in Y, P(x) = y \Rightarrow S(x, y)$

Definition (Completeness)

A program P is said to be complete regarding its specification if $\forall x \in X, y \in Y, S(x, y) \Rightarrow P(x) = y$

Correctness/Completeness of The SPN Token Player.

Theorem (Correctness) $\forall (spn : Spn) (s s' s'' : SpnState), which are well-defined,$ $spn_cycle spn s = Some (s', s'') \Rightarrow s \xrightarrow{\downarrow clock} s' \xrightarrow{\uparrow clock} s''.$ Correctness/Completeness of The SPN Token Player.

Theorem (Correctness)

 $\forall (spn: Spn) (s s' s'': SpnState), which are well-defined,$ $spn_cycle spn s = Some (s', s'') \Rightarrow s \stackrel{\downarrow clock}{\rightsquigarrow} s' \stackrel{\uparrow clock}{\rightsquigarrow} s''.$

Theorem (Completeness)

 $\begin{array}{l} \forall \ (spn: Spn) \ (s \ s' \ s'' : SpnState), \ which \ are \ well-defined, \\ s \stackrel{\downarrow \ clock}{\longrightarrow} \ s' \stackrel{\uparrow \ clock}{\longrightarrow} \ s'' \Rightarrow \ spn_cycle \ spn \ s \ = \ Some \ (s', \ s''). \end{array}$

Context.

- Formal verification of a model-to-text transformation from HILECOP PNs to VHDL.
- ▶ First step: model the semantics of HILECOP PNs (SITPNs).

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

 Handle asynchronous communication in a synchronous execution paradigm (GALS).
Conclusion.

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

- Handle asynchronous communication in a synchronous execution paradigm (GALS).
- Model VHDL semantics (at least a subpart).

Conclusion.

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

- Handle asynchronous communication in a synchronous execution paradigm (GALS).
- Model VHDL semantics (at least a subpart).
- Implement the model-to-text transformation.

Conclusion.

Done.

Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

- Handle asynchronous communication in a synchronous execution paradigm (GALS).
- Model VHDL semantics (at least a subpart).
- Implement the model-to-text transformation.
- Establish the proof of behavior preservation.

Bibliography.

Bibliography.

D. Andreu, D. Guiraud, and S. Guillaume. A distributed architecture for activating the peripheral nervous system.

Journal of Neural Engineering, 6(2):18, Feb. 2009.

X. Leroy.

Formal Verification of a Realistic Compiler.

Communications of the ACM (CACM), 52(7):107–115, July 2009.

The Coq Development Team. Coq, version 8.9.0. Inria, Jan. 2019. http://coq.inria.fr/.

Medical Implants: An Application of HILECOP.

Figure: A Schematic Representation of NEURINNOV's Implantable Neuroprotheses.

HILECOP and CE Certification.

CE Certification for Medical Devices.¹

- European Law on Medical Devices (2017/745).
- To obtain the certification:
 - Tests on devices (technologic, clinical).
 - Tests on elements of the production chain.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0745

Theorem (Correctness)

 $\forall (spn: Spn) (s s' s'': SpnState), which are well-defined,$ $spn_cycle spn s = Some (s', s'') \Rightarrow s \stackrel{\downarrow clock}{\rightsquigarrow} s', \stackrel{\uparrow clock}{\rightsquigarrow} s''.$

Theorem (Correctness) $\forall (spn : Spn) (s s' s'' : SpnState), which are well-defined,$ $<math>spn_cycle \ spn \ s = Some \ (s', \ s'') \Rightarrow s \stackrel{\downarrow clock}{\rightsquigarrow} s' \stackrel{\uparrow clock}{\rightsquigarrow} s''.$ Lemma (Falling Edge Correct) $\forall (spn : Spn) (s \ s' : SpnState), which are well-defined,$ $<math>spn_falling_edge \ spn \ s = Some \ s' \Rightarrow s \stackrel{\downarrow clock}{\rightsquigarrow} s'.$

Theorem (Correctness) $\forall (spn : Spn) (s s' s'' : SpnState), which are well-defined,$ $<math>spn_cycle \ spn \ s = Some \ (s', \ s'') \Rightarrow s \xrightarrow{\downarrow clock} s', \xrightarrow{\uparrow clock} s''.$ Lemma (Falling Edge Correct) $\forall (spn : Spn) (s \ s' : SpnState), which are well-defined,$ $<math>spn_falling_edge \ spn \ s = Some \ s' \Rightarrow s \xrightarrow{\downarrow clock} s'.$ Falling Edge Correct Proof.

- Induction on the priority groups of spn.
- With the help of other lemmas:

is_sensitized(t, M) ⇔ t ∈ sens(M)
is_firable(t, s) ⇔ t ∈ firable(s)
spn_falling_edge computes a proper residual marking.
...

Theorem (Correctness) $\forall (spn : Spn) (s \ s' \ s'' : SpnState), which are well-defined,$ $<math>spn_cycle \ spn \ s = Some \ (s', \ s'') \Rightarrow s \xrightarrow{\downarrow clock} s', \xrightarrow{\uparrow clock} s''.$ Lemma (Rising Edge Correct) $\forall (spn : Spn) (s \ s' : SpnState), which are well-defined,$ $<math>spn_rising_edge \ spn \ s = Some \ s' \Rightarrow s \xrightarrow{\uparrow clock} s'.$

Theorem (Correctness) $\forall (spn : Spn) (s s' s'' : SpnState), which are well-defined,$ $<math>spn_cycle \ spn \ s = Some \ (s', \ s'') \Rightarrow s \xrightarrow{\downarrow clock} s', \xrightarrow{\uparrow clock} s''.$ Lemma (Rising Edge Correct) $\forall (spn : Spn) (s \ s' : SpnState), which are well-defined,$ $<math>spn_rising_edge \ spn \ s = Some \ s' \Rightarrow s \xrightarrow{\uparrow clock} s'.$ Rising Edge Correct Proof.

- Induction on the list of transitions to be fired of state s.
- With the help of other lemmas:

1 update_marking_pre(t, M) = Some M' $\Leftrightarrow M' = M - \sum_{t_i \in Fired} pre(t_i)$ 2 update_marking_post(t, M) = Some M' $\Leftrightarrow M' = M + \sum_{t_i \in Fired} post(t_i)$ 3 ...

Theorem (Completeness)

 $\forall (spn: Spn) (s s' s'': SpnState), which are well-defined,$ $s \stackrel{\downarrow clock}{\rightsquigarrow} s' \stackrel{\uparrow clock}{\rightsquigarrow} s'' \Rightarrow spn_cycle spn s = Some (s', s'').$

Theorem (Completeness)

 $\forall (spn: Spn) (s s' s'': SpnState), which are well-defined,$ $s \stackrel{\downarrow clock}{\rightsquigarrow} s' \stackrel{\uparrow clock}{\rightsquigarrow} s'' \Rightarrow spn_cycle spn s = Some (s', s'').$

Lemma (Falling Edge Complete)

$$\forall (spn: Spn) (s s': SpnState), which are well-defined, $s \stackrel{\downarrow clock}{\rightsquigarrow} s' \Rightarrow spn_falling_edge spn s = Some s'.$$$

Theorem (Completeness)

 $\begin{array}{l} \forall \ (spn: Spn) \ (s \ s' \ s'' : SpnState), \ which \ are \ well-defined, \\ s \stackrel{\downarrow \ clock}{\rightsquigarrow} \ s' \stackrel{\uparrow \ clock}{\rightsquigarrow} \ s'' \Rightarrow \ spn_cycle \ spn \ s \ = \ Some \ (s', \ s''). \end{array}$

Lemma (Falling Edge Complete)

$$\forall (spn: Spn) (s s': SpnState), which are well-defined, $s \stackrel{\downarrow clock}{\rightsquigarrow} s' \Rightarrow spn_falling_edge spn s = Some s'.$$$

Lemma (Rising Edge Complete)

 $\begin{array}{l} \forall \ (spn:Spn) \ (s \ s':SpnState), \ which \ are \ well-defined, \\ s \ \stackrel{\uparrow \ clock}{\rightsquigarrow} \ s' \Rightarrow \ spn_rising_edge \ spn \ s \ = \ Some \ s'. \end{array}$