
Formal Verification of HILECOP.

A Process to Design and Implement Critical Digital Systems.

PhD student:
Vincent Iampietro1

PhD supervisors:
David Andreu1,2, David Delahaye1

1LIRMM, Université de Montpellier, CNRS, Montpellier, France
Firstname.Lastname@lirmm.fr

2NEURINNOV, Montpellier, France
David.Andreu@neurinnov.com

June 21, 2019

Context.

CRITICAL DIGITAL SYSTEMS (CDS)?

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 1 / 30

CRITICAL DIGITAL SYSTEMS (CDS)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 1 / 30

CRITICAL DIGITAL SYSTEMS (CDS)

Avionics Medicine Automotive

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 1 / 30

Critical Digital Systems: Design and Implementation.

Formal Model
1

Hardware
Description
Language

2
Physical
Circuit

3

m
od
el
to

te
xt

te
xt

to
ph
ys
ic
al
de
vi
ce

Figure: A Meta-process to Design and Implement CDS.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 2 / 30

HILECOP: A Process to Design and Implement CDS.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Figure: Workflow of the HILECOP Methodology, developed at INRIA
(CAMIN Team) [1].

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 3 / 30

Formal Methods for HILECOP.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Figure: Workflow of the HILECOP Methodology, developed at Inria
(CAMIN Team) [1].

Verification of HILECOP.
I Ensure model correctness (analysis).

I Ensure behavior preservation through transformation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 4 / 30

Formal Methods for HILECOP.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Figure: Workflow of the HILECOP Methodology, developed at Inria
(CAMIN Team) [1].

Verification of HILECOP.
I Ensure model correctness (analysis).

I Ensure behavior preservation through transformation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 4 / 30

Purpose of Our Work.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Figure: Workflow of the HILECOP Methodology.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Figure: Workflow of the HILECOP Methodology.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

P1

T1

P2

T2

P1

T1

P2

T2

Implementation
model

VHDL
Source
Code

model-to-text

transformation

Figure: Part of the HILECOP workflow subject to verification.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

P1

T1

P2

T2

P1

T1

P2

T2

Implementation
model

VHDL
Source
Code

model-to-text

transformation

Figure: Part of the HILECOP workflow subject to verification.

Goal. Proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

P1

T1

P2

T2

P1

T1

P2

T2

Implementation
model

VHDL
Source
Code

model-to-text

transformation

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by CompCert, a formally verified C compiler [2], written
with the Coq proof assistant [3]:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation and prove behavior
preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

P1

T1

P2

T2

P1

T1

P2

T2

Implementation
model

VHDL
Source
Code

model-to-text

transformation

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by CompCert, a formally verified C compiler [2], written
with the Coq proof assistant [3]:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation and prove behavior
preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

P1

T1

P2

T2

P1

T1

P2

T2

Implementation
model

VHDL
Source
Code

model-to-text

transformation

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by CompCert, a formally verified C compiler [2], written
with the Coq proof assistant [3]:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation and prove behavior
preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

Purpose of Our Work.

P1

T1

P2

T2

P1

T1

P2

T2

Implementation
model

VHDL
Source
Code

model-to-text

transformation

Figure: Part of the HILECOP workflow subject to verification.

Proof steps.

Inspired by CompCert, a formally verified C compiler [2], written
with the Coq proof assistant [3]:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation and prove behavior
preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 5 / 30

A Reminder on the Coq proof assistant.

About.
I Developed by INRIA and CNAM teams since 1984.

I 1984: first contribution by Thierry Coquand and Gérard Huet.

I 1991: Christine Paulin extends the language with the Calculus
of Inductive Constructions.

Coq: A bird with two legs.

I Generic Functional Programming Language.

I Proof language.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 6 / 30

Presentation of HILECOP Petri Nets.

The Petri Net (PN) Formalism.

I To model dynamic systems.

I Directed weighted graph.

I Places (≈ states or
resources) and transitions
(≈ events).

P0

(waiting for

request)

P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Figure: A request execution system
modeled with a Petri net.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 7 / 30

Marking and Transition Firing.

I Marking: current state of the
system.

I Sensitization: a transition t is
ready to be fired.

P0

(waiting for

request)

P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 8 / 30

Marking and Transition Firing.

I Marking: current state of the
system.

I Sensitization: a transition t is
ready to be fired.

Transition firing.

I M = (P0, 1), (P1, 2), (P2, 0)

I T0 is sensitized ⇒ T0 is fired.

I M ′ = (P0, 0), (P1, 0), (P2, 1)

P0

(waiting for

request)

P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 8 / 30

Marking and Transition Firing.

I Marking: current state of the
system.

I Sensitization: a transition t is
ready to be fired.

Transition firing.

I M = (P0, 1), (P1, 2), (P2, 0)

I T0 is sensitized ⇒ T0 is fired.

I M ′ = (P0, 0), (P1, 0), (P2, 1)

P0

(waiting for

request)

P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 8 / 30

Marking and Transition Firing.

I Marking: current state of the
system.

I Sensitization: a transition t is
ready to be fired.

Transition firing.

I M = (P0, 1), (P1, 2), (P2, 0)

I T0 is sensitized ⇒ T0 is fired.

I M ′ = (P0, 0), (P1, 0), (P2, 1)

P0

(waiting for

request)

P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 8 / 30

HILECOP High-Level Models.
Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Figure: An Example of HILECOP high-level model at the first stage of
the workflow.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 9 / 30

HILECOP High-Level Models.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Figure: Component assembling in a HILECOP high-level model.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 9 / 30

HILECOP High-Level Models.

P1

T1

P2

T2

P1

T1

P2

T2

Figure: Flattened version of the model.

Remark.
The flattened model corresponds to the implementation-ready
model, input of the model-to-text transformation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 9 / 30

HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

I Synchronously executed (with priorities)

I generalized

I extended

I Interpreted

I Time

I with macroplaces

I Petri Nets

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 10 / 30

HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

I Synchronously executed (with priorities)

I generalized

I extended

I Interpreted

I Time

I with macroplaces

I Petri Nets

We will only present Synchronously executed (with priorities),
generalized, extended Petri Nets (SPNs).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 10 / 30

Generalized and extended PNs.

P0 P1 P2

T0

3

T1

2 2

Figure: An example of extended, generalized PN.

I Generalized: Edge weights ∈ N.

I Extended: Inhibitor and test edges.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 11 / 30

Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

P0 P1

T0

P2 P3

T1

P4
2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 12 / 30

Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

P0 P1

T0

P2 P3

T1

P4
2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 12 / 30

Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

P0 P1

T0

P2 P3

T1

P4
2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 12 / 30

Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Conflict types.

I Structural: T0 and T1 have P0 as a common input place.

I Effective: the firing of T0 disables T1, and conversely.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?

I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?
I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?
I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Conflicts and priorities.

P0

T0 T1

Figure: An Example of Conflict (Structural and Effective).

Which transition will be fired?
I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1 !

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Conflicts and priorities.

P0

T0 T1

Figure: Resolving conflicts with priorities.

Priority relation.

T0 has a higher firing priority than T1.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Conflicts and priorities.

P0 P1

T0 T1 T2 T3

P2

T4 T5

Priority groups :

[T3, T2, T1, T0]

[T5, T4]

Figure: Determining priority groups in a PN.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 13 / 30

Formalizing HILECOP Petri Nets.

Formal Definition of SPNs.

A synchronously executed, extended, and generalized
Petri net with priorities is a tuple
<P,T , pre, test, inhib, post,M0, clock,�>
where we have:

1. P = {P0, . . . ,Pn} a set of places.

2. T = {T0, . . . ,Tn} a set of transitions.

3. pre ∈ P → T → N.

4. test ∈ P → T → N.

5. inhib ∈ P → T → N.

6. post ∈ T → P → N.

7. M0 ∈ P → N, the initial marking of the SPN.

8. clock ∈ {↓ clock, ↑ clock}.
9. �, the priority relation, which represents the firing priority

between transitions of the same priority group.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 14 / 30

Implementation of SPNs in Coq.

1 Structure Spn : Set :=

2 mk_Spn {
3 places : list Place;

4 transs : list Trans;

5 pre : Place → Trans → nat;

6 test : Place → Trans → nat;

7 inhib : Place → Trans → nat;

8 post : Trans → Place → nat;

9 initial_marking : Place → nat;

10 priority_groups : list (list Trans);

11 lneighbors : Trans → Neighbors;

12 }.

Figure: The Coq structure for SPNs.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 15 / 30

Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0, clock,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I A transition t ∈ sens(M), if M ≥ pre(t), and M ≥ test(t),
and M < inhib(t) or inhib(t) = 0.

I A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 16 / 30

Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0, clock,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I A transition t ∈ sens(M), if M ≥ pre(t), and M ≥ test(t),
and M < inhib(t) or inhib(t) = 0.

I A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 16 / 30

Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0, clock,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I A transition t ∈ sens(M), if M ≥ pre(t), and M ≥ test(t),
and M < inhib(t) or inhib(t) = 0.

I A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 16 / 30

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S and clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 17 / 30

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S and clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 17 / 30

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S and clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 17 / 30

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S and clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 17 / 30

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if ↓ clock = 1 and:

1 All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

2 All transitions both firable and sensitized by the residual
marking, which is the marking resulting from the firing of all
higher priority transitions, are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
3 All firable transitions that are not sensitized by the residual

marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 18 / 30

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if ↓ clock = 1 and:

1 All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

2 All transitions both firable and sensitized by the residual
marking, which is the marking resulting from the firing of all
higher priority transitions, are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
3 All firable transitions that are not sensitized by the residual

marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 18 / 30

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if ↓ clock = 1 and:

1 All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

2 All transitions both firable and sensitized by the residual
marking, which is the marking resulting from the firing of all
higher priority transitions, are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
3 All firable transitions that are not sensitized by the residual

marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 18 / 30

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if ↓ clock = 1 and:

1 All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

2 All transitions both firable and sensitized by the residual
marking, which is the marking resulting from the firing of all
higher priority transitions, are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.

3 All firable transitions that are not sensitized by the residual
marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 18 / 30

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if ↓ clock = 1 and:

1 All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

2 All transitions both firable and sensitized by the residual
marking, which is the marking resulting from the firing of all
higher priority transitions, are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
3 All firable transitions that are not sensitized by the residual

marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 18 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?
YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

An Example of SPN Semantics Rule.

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?
YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 19 / 30

SPN State Changing Relation (Rising Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↑ clock

s ′ = (Fired ,M ′) if ↑ clock = 1 and:

4 M ′ is the new marking resulting from the firing of all
transitions contained in Fired, i.e.:
M ′ = M −

∑
ti∈Fired

(
pre(ti)− post(ti)

)
.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 20 / 30

SPN State Changing Relation (Rising Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↑ clock

s ′ = (Fired ,M ′) if ↑ clock = 1 and:

4 M ′ is the new marking resulting from the firing of all
transitions contained in Fired, i.e.:
M ′ = M −

∑
ti∈Fired

(
pre(ti)− post(ti)

)
.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 20 / 30

SPN Semantics in Coq.

1 Inductive SpnSemantics (spn : Spn) (s s’ : SpnState) : Clock → Prop :=

2 | SpnSemantics_falling_edge :

3 (* Rules 1, 2 and 3 *)

4 ... → SpnSemantics spn s s’ falling_edge

5 | SpnSemantics_rising_edge :

6 (* Ensures the consistency of spn, s and s’. *)

7 IsWellDefinedSpn spn →
8 IsWellDefinedSpnState spn s →
9 IsWellDefinedSpnState spn s’ →

10 (* Fired stays the same between state s and s’. *)

11 s.(fired) = s’.(fired) →
12 (* Rule 4 of SPN semantics. *)

13 (forall (p : Place) (n : nat),

14 In (p, n) s.(marking) →
15 In (p, n − (pre_sum spn p s.(fired)) + (post_sum spn p s.(fired)))

16 s’.(marking)) → SpnSemantics spn s s’ rising_edge.

Figure: The Semantics of SPNs in Coq.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 21 / 30

SPN Token Player Program.

SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Unformal way to verify the SPN semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 22 / 30

SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Unformal way to verify the SPN semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 22 / 30

SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Unformal way to verify the SPN semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 22 / 30

An Algorithm for one cycle of evolution.
Data: spn, an SPN. s, the state of spn at the beginning of the clock cycle.

Result: A couple of SPN states, s’ and s”, results of the evolution of spn from state s.

1 begin

2 fired transitions← []

/* Phase 1, falling edge of the clock. */

3 foreach priority group in spn.priority groups do

4 resid m← s.marking

5 foreach trans in priority group do

6 if is firable(trans, s) and is sensitized(trans, resid m) then

7 update residual marking(trans, resid m)

8 push back(trans, fired transitions)

9 s’← make state(fired transitions, s.marking)

/* Phase 2, rising edge of the clock. */

10 new marking ← s’.marking

11 foreach trans in fired transitions do

12 update marking pre(trans, new marking)

13 update marking post(trans, new marking)

14 s”← make state(s’.fired, new marking)

15 return (s’, s”)

Algorithm 1: cycle(spn, s)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 23 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

s = (fired ,marking) with s.marking = (P0, 2), (P1, 0), (P2, 0)
priority groups = [[T0,T1,T2]]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

priority groups = [[T0,T1,T2]]
fired transitions = []

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

priority groups = [[T0,T1,T2]]
fired transitions = []
priority group = [T0,T1,T2]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]

resid m = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]

resid m = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]

resid m = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0,T1]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0,T1]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0,T1]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 24 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])
fired transitions = [T0,T1]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 1), (P1, 1), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 1), (P1, 1), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 0), (P1, 1), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 0), (P1, 1), (P2, 1)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

s’’ = ([T0,T1], [(P0, 0), (P1, 1), (P2, 1)])

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])
s’’ = ([T0,T1], [(P0, 0), (P1, 1), (P2, 1)])

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 25 / 30

Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 26 / 30

Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 26 / 30

Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 26 / 30

Reminder on Correctness and Completeness.

Let X ,Y be two types. Let P ∈ X → Y be a program and
S ∈ X → Y → {>, ⊥} be its specification.
P takes x ∈ X as an input value and returns some y ∈ Y , S is a
predicate that takes x and y as input values.

Definition (Correctness)

A program P is said to be correct regarding its specification if
∀x ∈ X , y ∈ Y , P(x) = y ⇒ S(x , y)

Definition (Completeness)

A program P is said to be complete regarding its specification if
∀x ∈ X , y ∈ Y , S(x , y)⇒ P(x) = y

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 27 / 30

Correctness/Completeness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 28 / 30

Correctness/Completeness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 28 / 30

Conclusion.

Conclusion.

Context.
I Formal verification of a model-to-text transformation from

HILECOP PNs to VHDL.

I First step: model the semantics of HILECOP PNs (SITPNs).

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

I Handle asynchronous communication in a synchronous
execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

I Handle asynchronous communication in a synchronous
execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

I Handle asynchronous communication in a synchronous
execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.

I Handle asynchronous communication in a synchronous
execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.
I Handle asynchronous communication in a synchronous

execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.
I Handle asynchronous communication in a synchronous

execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.
I Handle asynchronous communication in a synchronous

execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Conclusion.

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

Doing.

Add time, interpretation and macroplaces to SPNs semantics.

To Do.
I Handle asynchronous communication in a synchronous

execution paradigm (GALS).

I Model VHDL semantics (at least a subpart).

I Implement the model-to-text transformation.

I Establish the proof of behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 29 / 30

Bibliography.

Bibliography.

D. Andreu, D. Guiraud, and S. Guillaume.
A distributed architecture for activating the peripheral nervous
system.
Journal of Neural Engineering, 6(2):18, Feb. 2009.

X. Leroy.
Formal Verification of a Realistic Compiler.
Communications of the ACM (CACM), 52(7):107–115, July
2009.

The Coq Development Team.
Coq, version 8.9.0.
Inria, Jan. 2019.
http://coq.inria.fr/.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. Bibliography. 30 / 30

http://coq.inria.fr/

Medical Implants: An Application of HILECOP.

Digital Analog
Controller stimulation

pulses generator
1

Digital Analog
Controller stimulation

pulses generator
2

Digital Analog
Controller stimulation

pulses generator
n

Figure: A Schematic Representation of NEURINNOV’s Implantable
Neuroprotheses.

31 / 30

HILECOP and CE Certification.

CE Certification for Medical Devices. 1

I European Law on Medical Devices (2017/745).
I To obtain the certification:

I Tests on devices (technologic, clinical).
I Tests on elements of the production chain.

1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0745

32 / 30

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0745

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

33 / 30

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Falling Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn falling edge spn s = Some s’ ⇒ s
↓ clock

s’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

33 / 30

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Falling Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn falling edge spn s = Some s’ ⇒ s
↓ clock

s’.

Falling Edge Correct Proof.

I Induction on the priority groups of spn.
I With the help of other lemmas:

1 is sensitized(t, M) ⇔ t ∈ sens(M)
2 is firable(t, s) ⇔ t ∈ firable(s)
3 spn falling edge computes a proper residual marking.
4 . . .

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

33 / 30

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

33 / 30

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

33 / 30

Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.

34 / 30

Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.

34 / 30

Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.

34 / 30

	Context.
	Presentation of HILECOP Petri Nets.
	Formalizing HILECOP Petri Nets.
	SPN Token Player Program.
	Conclusion.
	Bibliography.
	Appendix

