An Introduction to Formal Methods in Software
Engineering.

PhD student:
Vincent lampietro

PhD supervisors:
David Andreu, David Delahaye

December 4, 2019

Definitions.

Formal Methods.
Formal methods are techniques used to model systems as
mathematical entities.

Systems can be
» Digital architectures
» Physical /Biological phenomenons
» Social interaction schemes
> and...

1/11

Definitions.

Formal Methods.
Formal methods are techniques used to model systems as
mathematical entities.

Systems can be
» Digital architectures
» Physical /Biological phenomenons
» Social interaction schemes

» and...softwares!

1/11

Formal methods: perks and drawbacks.

Perks.

Mathematical approaches to model softwares:
» Improve the precision of the design.
» Enable proofs of correctness.

> Permit the extraction of properties.

Overall reliability of the software

2/11

Formal methods: perks and drawbacks.

Drawbacks.

» Conception time increases dramatically.
» Models are simpler than real softwares.

» Lack of qualified workforce.

Time & money spent to build a software

2/11

Formal methods: when do we need them?

» Development of safety-critical systems:
® Avionics

Medicine

Automotive

[]
[]
® Nuclear
[]

3/11

Formal methods: when do we need them?

» Development of safety-critical systems:
® Avionics
® Medicine
® Automotive
® Nuclear
L4 P
> Risks:
® Loss of life/lives
® Loss of resources (financial, natural...)

3/11

Formal methods: when do we need them?

Critical bugs are real!

4

Therac-25 radiation therapy, excessive quantities of beta
radiation (1980s).

Patriot Missile, floating point rounding error (1991).

Ariane 5 failure, conversion from 64-bit floating to 16-bit
signed (1996).

Hitomi astronomical satellite destruction, thruster orientation
bug (2016).

See P.G.Neumann'’s list of Computer-related Risks
[Neumann, 1995].

3/11

What |S bug? (baby don’t hurt me...)

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

4/11

What is bug?

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

» Airsafe: “l want an autopilot program that avoid plane
crashes.”

4/11

What is bug?

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

» Airsafe: “l want an autopilot program that avoid plane
crashes.”

P> Result: the plane never leaves the ground!

4/11

What is bug?

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

» Airsafe: “l want an autopilot program that avoid plane
crashes.”

P> Result: the plane never leaves the ground!

» Question: Is it a bug?

4/11

What is bug?

Definition of a bug (failure).

“an undesired effect observed in the software’s delivered service”,
[Abran, 2004].

Remark.
A bug is always related to the software specification.

4/11

About Specification.

Specification expressed in natural language can be:
» incomplete (e.g, the autopilot program).

> ambiguous: “l want an autopilot program that avoid plane
crashes on the ground.”

5/11

About Specification.

Formal specification.

P> Removes the ambiguity.

» Limits: never sure about completeness.

Formal specification formats.

» Unified Modelling Language (UML).
» First Order Logic (FOL).

> Petri nets.

» Any formal languages. ..

5/11

Formal method techniques.

> Model checking.

» Automatic theorem proving.
» Deductive methods

> ...

6/ 11

Formal method techniques.

> Model checking.

» Automatic theorem proving.
» Deductive methods.

> ...

6/ 11

Formal method techniques.

Deductive methods.

PROGRAM IMPL.

Proof of soundness/completeness
between SPEC. and IMPL.

6/11

Formal method techniques.

Deductive methods.

FORMAL SPEC.

PROGRAM IMPL.

Proof of soundness/completeness
between SPEC. and IMPL.

Human-executed although
mechanized

6/11

An example of program.

Natural language specification.

A bank:
“l want a program that debits a non-negative amount from an
account if there's enough money in the account.”

7/11

An example of program.

Natural language specification.

A bank:
“l want a program that debits a non-negative amount from an

account if there's enough money in the account.”

7/11

An example of program.

Formal specification.
Debit € Z - 7Z — (Z U Err) — {T,L1} =
Yacc,amnt € 7,
| acc > amnt > 0 = Debit(acc, amnt, acc — amnt)
| amnt < 0 = Debit(acc, amnt,Err)
| amnt > acc = Debit(acc,amnt,Err)

7/11

An example of program.

Formal specification.
Debit € Z —+7Z — (Z U Err) — {T,L1} =
Yacc,amnt € Z,
| acc > amnt > 0 = Debit(acc,amnt, acc — amnt)
| amnt < 0 = Debit(acc, amnt,Err)
| amnt > acc = Debit(acc,amnt,Err)

Program implementation.
Yacc,amnt € 7,

acc —amnt if (acc > amnt > 0)

debit_impl(acc, amnt) = .
Err otherwise

7/11

An example of program.

Proofs.

7/11

An example of program.

Proofs.

» Soundness:
Vacc,amnt € Z,acc’ € Z U Err,
debit _impl(acc, amnt) = acc’ = Debit(acc,amnt, acc’).

7/11

An example of program.

Proofs.

» Soundness:
Vacc,amnt € Z,acc’ € Z UErr,
debit _impl(acc, amnt) = acc’ = Debit(acc,amnt, acc’).
» Completeness:
Vacc,amnt € Z,acc’ € Z UErr
Debit(acc,amnt, acc’) = debit_impl(acc, amnt) = acc’.

7/11

Another example of program.

Formal specification
Sme N> Ne{T,L}=VnmeN, m= w:>8um(n,m)

Program implementation.

0 if (n=0)

Vn e N, sumf(n) = .
n+ sumf(n—1) otherwise

8/11

Another example of program.

Formal specification

Sume N Ne{T,L} =VnmeN, mz%iSum(n,m)
or
Vn,me N, Sum(n,m)zm:w

Program implementation.

0 if (n=0)

Vn €N, sumf(n) =
! umf(n) {n—i—sumf(n—l) otherwise

8 /11

The Coq proof assistant.

Coq is one formal proof verifier among many (Isabelle, HOL,
PVS...).

FORMAL SPEC. | ——— language for SPEC. (Gallina)
PROGRAM IMPL. | ——— language for IMPL. (Gallina)

|

Proof of soundness/completeness
between SPEC. and IMPL.

—— language for PROOF. (Tactics)

COQ PROOF ASSISTANT

9/11

The Coq proof assistant.

Coq is one formal proof verifier among many (Isabelle, HOL,
PVS...).

Use cases [Leroy, 2014].

» Basic mathematics theories (geometry, algebra. ..):
e.g, Four Color Theorem proof [Gonthier, 2008].

» Complex algorithms, and protocols verification:
e.g, Boyer-Moore majority vote algorithm, formalized by
C.Paulin-Mohring.

» Program verification (written in Coq!).

9/11

Coq demo.

10 /11

Conclusion.

» Real need for formal methods for safety-critical softwares
(especially as software complexity increases).

11 /11

Conclusion.

» Real need for formal methods for safety-critical softwares
(especially as software complexity increases).
» Adoption of formal methods, a 2-axis process:
1. Training a qualified workforce.

2. Helping uninitiated developers (automatic theorem provers for
main-stream programming languages).
e.g the Frama-C framework [Cuoq et al., 2012].

11 /11

Conclusion.

» Real need for formal methods for safety-critical softwares
(especially as software complexity increases).
» Adoption of formal methods, a 2-axis process:
1. Training a qualified workforce.
2. Helping uninitiated developers (automatic theorem provers for
main-stream programming languages).
e.g the Frama-C framework [Cuoq et al., 2012].
» Formal methods are not only for software engineering!
e.g. Applications to digital architecture design.

11 /11

Bibliography.

E) [&) =J

Abran, A., editor (2004).

Guide to the software engineering body of knowledge, 2004 version: SWEBOK ; a project of the IEEE
Computer Society Professional Practices Committee.

IEEE Computer Society, Los Alamitos, Calif.

OCLC: 934432015.

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski, B. (2012).

Frama-C.
In Eleftherakis, G., Hinchey, M., and Holcombe, M., editors, Software Engineering and Formal Methods,
Lecture Notes in Computer Science, pages 233-247, Berlin, Heidelberg. Springer.

Gonthier, G. (2008).

The Four Colour Theorem: Engineering of a Formal Proof.

In Kapur, D., editor, Computer Mathematics, Lecture Notes in Computer Science, pages 333—-333, Berlin,
Heidelberg. Springer

Leroy, X. (2014).

Spcification et vrification formelles avec I'assistant la preuve Coq.

Neumann, P. (1995).

Computer-related risks.
ACM Press ; Addison-Wesley, New York, New York : Reading, Mass.

	Appendix

