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Definitions.

Formal Methods.
Formal methods are techniques used to model systems as
mathematical entities.

Systems can be

I Digital architectures

I Physical/Biological phenomenons

I Social interaction schemes

I and. . .
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Formal methods: perks and drawbacks.

Perks.
Mathematical approaches to model softwares:

I Improve the precision of the design.

I Enable proofs of correctness.

I Permit the extraction of properties.

Overall reliability of the software
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Formal methods: perks and drawbacks.

Drawbacks.

I Conception time increases dramatically.

I Models are simpler than real softwares.

I Lack of qualified workforce.

Time & money spent to build a software
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Formal methods: when do we need them?

I Development of safety-critical systems:
• Avionics
• Medicine
• Automotive
• Nuclear
• . . .

I Risks:
• Loss of life/lives
• Loss of resources (financial, natural. . . )
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Formal methods: when do we need them?

Critical bugs are real!

I Therac-25 radiation therapy, excessive quantities of beta
radiation (1980s).

I Patriot Missile, floating point rounding error (1991).

I Ariane 5 failure, conversion from 64-bit floating to 16-bit
signed (1996).

I Hitomi astronomical satellite destruction, thruster orientation
bug (2016).

I See P.G.Neumann’s list of Computer-related Risks
[Neumann, 1995].
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What is bug? (baby don’t hurt me. . . )

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

I Airsafe: “I want an autopilot program that avoid plane
crashes.”

I Result: the plane never leaves the ground!

I Question: Is it a bug?
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What is bug?

Definition of a bug (failure).

“an undesired effect observed in the software’s delivered service”,
[Abran, 2004].

Remark.
A bug is always related to the software specification.
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About Specification.

Specification expressed in natural language can be:

I incomplete (e.g, the autopilot program).

I ambiguous: “I want an autopilot program that avoid plane
crashes on the ground.”
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About Specification.

Formal specification.

I Removes the ambiguity.

I Limits: never sure about completeness.

Formal specification formats.

I Unified Modelling Language (UML).

I First Order Logic (FOL).

I Petri nets.

I Any formal languages. . .
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Formal method techniques.

I Model checking.

I Automatic theorem proving.

I Deductive methods

I . . .

Deductive methods.

Proof of soundness/completeness

between SPEC. and IMPL.

PROGRAM IMPL.

FORMAL SPEC.
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Formal method techniques.

Deductive methods.

Proof of soundness/completeness

between SPEC. and IMPL.

PROGRAM IMPL.

FORMAL SPEC.

Human-executed although
mechanized
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An example of program.

Natural language specification.

A bank:
“I want a program that debits a non-negative amount from an
account if there’s enough money in the account.”
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An example of program.

Formal specification.

Debit ∈ Z→ Z→ (Z ∪ Err)→ {>,⊥} ≡
∀acc , amnt ∈ Z,
| acc ≥ amnt > 0⇒ Debit(acc , amnt, acc − amnt)
| amnt ≤ 0⇒ Debit(acc, amnt, Err)
| amnt > acc ⇒ Debit(acc , amnt, Err)
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An example of program.

Formal specification.

Debit ∈ Z→ Z→ (Z ∪ Err)→ {>,⊥} ≡
∀acc , amnt ∈ Z,
| acc ≥ amnt > 0⇒ Debit(acc , amnt, acc − amnt)
| amnt ≤ 0⇒ Debit(acc, amnt, Err)
| amnt > acc ⇒ Debit(acc , amnt, Err)

Program implementation.

∀acc , amnt ∈ Z,

debit impl(acc , amnt) =

{
acc − amnt if (acc ≥ amnt > 0)

Err otherwise
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An example of program.

Proofs.

I Soundness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err,
debit impl(acc, amnt) = acc ′ ⇒ Debit(acc , amnt, acc ′).

I Completeness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err
Debit(acc , amnt, acc ′)⇒ debit impl(acc , amnt) = acc ′.
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Another example of program.

Formal specification

Sum ∈ N→ N ∈ {>,⊥} ≡ ∀n,m ∈ N, m = n(n+1)
2 ⇒ Sum(n,m)

Program implementation.

∀n ∈ N, sumf (n) =

{
0 if (n = 0)

n + sumf (n − 1) otherwise
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Another example of program.

Formal specification

Sum ∈ N→ N ∈ {>,⊥} ≡ ∀n,m ∈ N, m = n(n+1)
2 ⇒ Sum(n,m)

or
∀n,m ∈ N, Sum(n,m) ≡ m = n(n+1)

2

Program implementation.
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The Coq proof assistant.
Coq is one formal proof verifier among many (Isabelle, HOL,
PVS. . . ).

FORMAL SPEC.

PROGRAM IMPL.

Proof of soundness/completeness

between SPEC. and IMPL.

language for SPEC. (Gallina)

language for IMPL. (Gallina)

language for PROOF. (Tactics)

Coq proof assistant

Use cases [Leroy, 2014].

I Basic mathematics theories (geometry, algebra. . . ):
e.g, Four Color Theorem proof [Gonthier, 2008].

I Complex algorithms, and protocols verification:
e.g, Boyer-Moore majority vote algorithm, formalized by
C.Paulin-Mohring.

I Program verification (written in Coq!).
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Coq demo.
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Conclusion.

I Real need for formal methods for safety-critical softwares
(especially as software complexity increases).

I Adoption of formal methods, a 2-axis process:

1. Training a qualified workforce.
2. Helping uninitiated developers (automatic theorem provers for

main-stream programming languages).
e.g the Frama-C framework [Cuoq et al., 2012].

I Formal methods are not only for software engineering!
e.g. Applications to digital architecture design.
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