
An Introduction to Formal Methods in Software
Engineering.

PhD student:
Vincent Iampietro

PhD supervisors:
David Andreu, David Delahaye

December 4, 2019



Definitions.

Formal Methods.
Formal methods are techniques used to model systems as
mathematical entities.

Systems can be

I Digital architectures

I Physical/Biological phenomenons

I Social interaction schemes

I and. . .

1 / 11



Definitions.

Formal Methods.
Formal methods are techniques used to model systems as
mathematical entities.

Systems can be

I Digital architectures

I Physical/Biological phenomenons

I Social interaction schemes

I and. . . softwares!

1 / 11



Formal methods: perks and drawbacks.

Perks.
Mathematical approaches to model softwares:

I Improve the precision of the design.

I Enable proofs of correctness.

I Permit the extraction of properties.

Overall reliability of the software

2 / 11



Formal methods: perks and drawbacks.

Drawbacks.

I Conception time increases dramatically.

I Models are simpler than real softwares.

I Lack of qualified workforce.

Time & money spent to build a software

2 / 11



Formal methods: when do we need them?

I Development of safety-critical systems:
• Avionics
• Medicine
• Automotive
• Nuclear
• . . .

I Risks:
• Loss of life/lives
• Loss of resources (financial, natural. . . )

3 / 11



Formal methods: when do we need them?

I Development of safety-critical systems:
• Avionics
• Medicine
• Automotive
• Nuclear
• . . .

I Risks:
• Loss of life/lives
• Loss of resources (financial, natural. . . )

3 / 11



Formal methods: when do we need them?

Critical bugs are real!

I Therac-25 radiation therapy, excessive quantities of beta
radiation (1980s).

I Patriot Missile, floating point rounding error (1991).

I Ariane 5 failure, conversion from 64-bit floating to 16-bit
signed (1996).

I Hitomi astronomical satellite destruction, thruster orientation
bug (2016).

I See P.G.Neumann’s list of Computer-related Risks
[Neumann, 1995].

3 / 11



What is bug? (baby don’t hurt me. . . )

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

I Airsafe: “I want an autopilot program that avoid plane
crashes.”

I Result: the plane never leaves the ground!

I Question: Is it a bug?

4 / 11



What is bug?

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

I Airsafe: “I want an autopilot program that avoid plane
crashes.”

I Result: the plane never leaves the ground!

I Question: Is it a bug?

4 / 11



What is bug?

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

I Airsafe: “I want an autopilot program that avoid plane
crashes.”

I Result: the plane never leaves the ground!

I Question: Is it a bug?

4 / 11



What is bug?

Context.
The Airsafe company orders an autopilot program to its developer
team to control the Swiss new aircraft fleet.

I Airsafe: “I want an autopilot program that avoid plane
crashes.”

I Result: the plane never leaves the ground!

I Question: Is it a bug?

4 / 11



What is bug?

Definition of a bug (failure).

“an undesired effect observed in the software’s delivered service”,
[Abran, 2004].

Remark.
A bug is always related to the software specification.

4 / 11



About Specification.

Specification expressed in natural language can be:

I incomplete (e.g, the autopilot program).

I ambiguous: “I want an autopilot program that avoid plane
crashes on the ground.”

5 / 11



About Specification.

Formal specification.

I Removes the ambiguity.

I Limits: never sure about completeness.

Formal specification formats.

I Unified Modelling Language (UML).

I First Order Logic (FOL).

I Petri nets.

I Any formal languages. . .

5 / 11



Formal method techniques.

I Model checking.

I Automatic theorem proving.

I Deductive methods

I . . .

Deductive methods.

Proof of soundness/completeness

between SPEC. and IMPL.

PROGRAM IMPL.

FORMAL SPEC.

6 / 11



Formal method techniques.

I Model checking.

I Automatic theorem proving.

I Deductive methods.

I . . .

Deductive methods.

Proof of soundness/completeness

between SPEC. and IMPL.

PROGRAM IMPL.

FORMAL SPEC.

6 / 11



Formal method techniques.

Deductive methods.

Proof of soundness/completeness

between SPEC. and IMPL.

PROGRAM IMPL.

FORMAL SPEC.

6 / 11



Formal method techniques.

Deductive methods.

Proof of soundness/completeness

between SPEC. and IMPL.

PROGRAM IMPL.

FORMAL SPEC.

Human-executed although
mechanized

6 / 11



An example of program.

Natural language specification.

A bank:
“I want a program that debits a non-negative amount from an
account if there’s enough money in the account.”

7 / 11



An example of program.

Natural language specification.

A bank:
“I want a program that debits a non-negative amount from an
account if there’s enough money in the account.”

7 / 11



An example of program.

Formal specification.

Debit ∈ Z→ Z→ (Z ∪ Err)→ {>,⊥} ≡
∀acc , amnt ∈ Z,
| acc ≥ amnt > 0⇒ Debit(acc , amnt, acc − amnt)
| amnt ≤ 0⇒ Debit(acc, amnt, Err)
| amnt > acc ⇒ Debit(acc , amnt, Err)

7 / 11



An example of program.

Formal specification.

Debit ∈ Z→ Z→ (Z ∪ Err)→ {>,⊥} ≡
∀acc , amnt ∈ Z,
| acc ≥ amnt > 0⇒ Debit(acc , amnt, acc − amnt)
| amnt ≤ 0⇒ Debit(acc, amnt, Err)
| amnt > acc ⇒ Debit(acc , amnt, Err)

Program implementation.

∀acc , amnt ∈ Z,

debit impl(acc , amnt) =

{
acc − amnt if (acc ≥ amnt > 0)

Err otherwise

7 / 11



An example of program.

Proofs.

I Soundness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err,
debit impl(acc, amnt) = acc ′ ⇒ Debit(acc , amnt, acc ′).

I Completeness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err
Debit(acc , amnt, acc ′)⇒ debit impl(acc , amnt) = acc ′.

7 / 11



An example of program.

Proofs.

I Soundness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err,
debit impl(acc, amnt) = acc ′ ⇒ Debit(acc , amnt, acc ′).

I Completeness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err
Debit(acc , amnt, acc ′)⇒ debit impl(acc , amnt) = acc ′.

7 / 11



An example of program.

Proofs.

I Soundness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err,
debit impl(acc, amnt) = acc ′ ⇒ Debit(acc , amnt, acc ′).

I Completeness:
∀acc , amnt ∈ Z, acc ′ ∈ Z ∪ Err
Debit(acc , amnt, acc ′)⇒ debit impl(acc , amnt) = acc ′.

7 / 11



Another example of program.

Formal specification

Sum ∈ N→ N ∈ {>,⊥} ≡ ∀n,m ∈ N, m = n(n+1)
2 ⇒ Sum(n,m)

Program implementation.

∀n ∈ N, sumf (n) =

{
0 if (n = 0)

n + sumf (n − 1) otherwise

8 / 11



Another example of program.

Formal specification

Sum ∈ N→ N ∈ {>,⊥} ≡ ∀n,m ∈ N, m = n(n+1)
2 ⇒ Sum(n,m)

or
∀n,m ∈ N, Sum(n,m) ≡ m = n(n+1)

2

Program implementation.

∀n ∈ N, sumf (n) =

{
0 if (n = 0)

n + sumf (n − 1) otherwise

8 / 11



The Coq proof assistant.
Coq is one formal proof verifier among many (Isabelle, HOL,
PVS. . . ).

FORMAL SPEC.

PROGRAM IMPL.

Proof of soundness/completeness

between SPEC. and IMPL.

language for SPEC. (Gallina)

language for IMPL. (Gallina)

language for PROOF. (Tactics)

Coq proof assistant

Use cases [Leroy, 2014].

I Basic mathematics theories (geometry, algebra. . . ):
e.g, Four Color Theorem proof [Gonthier, 2008].

I Complex algorithms, and protocols verification:
e.g, Boyer-Moore majority vote algorithm, formalized by
C.Paulin-Mohring.

I Program verification (written in Coq!).

9 / 11



The Coq proof assistant.

Coq is one formal proof verifier among many (Isabelle, HOL,
PVS. . . ).

Use cases [Leroy, 2014].

I Basic mathematics theories (geometry, algebra. . . ):
e.g, Four Color Theorem proof [Gonthier, 2008].

I Complex algorithms, and protocols verification:
e.g, Boyer-Moore majority vote algorithm, formalized by
C.Paulin-Mohring.

I Program verification (written in Coq!).

9 / 11



Coq demo.

10 / 11



Conclusion.

I Real need for formal methods for safety-critical softwares
(especially as software complexity increases).

I Adoption of formal methods, a 2-axis process:

1. Training a qualified workforce.
2. Helping uninitiated developers (automatic theorem provers for

main-stream programming languages).
e.g the Frama-C framework [Cuoq et al., 2012].

I Formal methods are not only for software engineering!
e.g. Applications to digital architecture design.

11 / 11



Conclusion.

I Real need for formal methods for safety-critical softwares
(especially as software complexity increases).

I Adoption of formal methods, a 2-axis process:

1. Training a qualified workforce.
2. Helping uninitiated developers (automatic theorem provers for

main-stream programming languages).
e.g the Frama-C framework [Cuoq et al., 2012].

I Formal methods are not only for software engineering!
e.g. Applications to digital architecture design.

11 / 11



Conclusion.

I Real need for formal methods for safety-critical softwares
(especially as software complexity increases).

I Adoption of formal methods, a 2-axis process:

1. Training a qualified workforce.
2. Helping uninitiated developers (automatic theorem provers for

main-stream programming languages).
e.g the Frama-C framework [Cuoq et al., 2012].

I Formal methods are not only for software engineering!
e.g. Applications to digital architecture design.

11 / 11



Bibliography.

Abran, A., editor (2004).

Guide to the software engineering body of knowledge, 2004 version: SWEBOK ; a project of the IEEE
Computer Society Professional Practices Committee.
IEEE Computer Society, Los Alamitos, Calif.
OCLC: 934432015.

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski, B. (2012).

Frama-C.
In Eleftherakis, G., Hinchey, M., and Holcombe, M., editors, Software Engineering and Formal Methods,
Lecture Notes in Computer Science, pages 233–247, Berlin, Heidelberg. Springer.

Gonthier, G. (2008).

The Four Colour Theorem: Engineering of a Formal Proof.
In Kapur, D., editor, Computer Mathematics, Lecture Notes in Computer Science, pages 333–333, Berlin,
Heidelberg. Springer.

Leroy, X. (2014).

Spcification et vrification formelles avec l’assistant la preuve Coq.

Neumann, P. (1995).

Computer-related risks.
ACM Press ; Addison-Wesley, New York, New York : Reading, Mass.


	Appendix

